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The main goal of the present paper is to sharpen some results about the error made
when the Wild sums, used to represent the solution of the Kac analog of Boltzmann’s
equation, are truncated at the n-th stage. More precisely, in Carlen, Carvalho and
Gabetta (J. Funct. Anal. 220: 362–387 (2005)), one finds a bound for the above-
mentioned error which depends on (an�+ε). On the one hand, it is shown that �,
the least negative eigenvalue of the linearized collision operator, is the best possible
exponent. On the other hand, ε is an extra strictly positive number and a a positive
coefficient which depends on ε too. Thus, it is interesting to check whether ε can be
removed from the above bound. According to the aforesaid reference, this problem
is studied here by means of the probability distribution of the depth of a leaf in a
McKean random tree. In fact, an accurate study of the probability generating func-
tion of such a depth leads to conclude that the above bound can be replaced with
(a′n�).

KEY WORDS: depth of a leaf, depth of a tree, Kac’s equation, McKean binary tree
(or graph), rate of convergence of Wild sums, Stirling numbers (of the first kind), Wild
convolution, Wild sum.

1. INTRODUCTION

Kac’s equation describes the motion of a single molecule in a chaotic bath of
like molecules moving on the line. (7,10,12,13) At time t = 0 the velocities of the
molecules are considered as random quantities with a probability distribution
satisfying a few specific conditions. In particular, they are assumed to be identically
distributed with a common probability density function f0 having finite mean
energy. According to the Kac model, velocities turn out to be identically distributed
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at each time t > 0 and their common density f (·, t) satisfies the so-called Kac’s
analog of Boltzmann’s equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t
f (v, t) = 1

2π

∫

R×[0,2π)
{ f (v cos θ − w sin θ, t) f (v sin θ + w cos θ, t)

− f (v, t) f (w, t)} dwdθ

f (v, 0+) := f0(v) (t > 0, v ∈ R).

(1)

The right-hand side of the above equation is also well-known as collisional integral.
In Ref. 17, McKean shows that, within the class of probability density functions
on R, (1) has a unique solution which can be expressed as Wild’s sum. (22) After
introducing the characteristic functions ϕ0 and ϕ(·, t) of the initial velocity and
of the velocity at time t of each particle, respectively, one can re-write (1) in the
following terms

⎧
⎨

⎩

∂

∂t
ϕ(x, t) = 1

2π

∫

[0,2π)
ϕ(x sin θ, t)ϕ(x cos θ, t)dθ − ϕ(x, t)

ϕ(x, 0+) := ϕ0(x) (t > 0, x ∈ R).
(2)

See Ref. 3. Throughout the present paper we frequently refer to (2) which is
compatible with arbitrary initial probability measures. The case of initial data
given by arbitrary probability distributions has been considered, for example, by
Carlen and Lu.(6)

The Wild sum for the solution of (2) is defined by

ϕ(x, t) =
∑

n≥1

e−t (1 − e−t )n−1q̂+
n (x ; ϕ0) (t ≥ 0, x ∈ R) (3)

where functions q̂+
n s are found by recursion as

q̂+
n (x ; ϕ0) = 1

n − 1

n−1∑

j=1

q̂+
n− j (x ; ϕ0) • q̂+

j (x ; ϕ0) (n = 2, 3, . . .) (4)

with q̂+
1 ≡ ϕ0 and the proviso that • stands for

ϕ1 • ϕ2(x) := 1

2π

∫ 2π

0
ϕ1(x cos θ )ϕ2(x sin θ ) dθ (x ∈ R).

It is clear that if ϕ1 and ϕ2 are characteristic functions, then ϕ1 • ϕ2 is a character-
istic function too. The corresponding probability law is called Wild convolution.
If �1 and �2 denote the probability laws associated with ϕ1 and ϕ2, respectively,
then their Wild convolution will be denoted by �1 ◦ �2.

There exist many studies about the convergence (as t diverges to infin-
ity) of f (·, t) towards the normalized Maxwellian M(v) = (2π )−1/2 exp{−v2/2},
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v ∈ R. In particular, in Ref. 5 one determines a bound for ‖q+
n ( f0) − M‖L1(R)

where q+
n , i.e. any probability density corresponding to q̂+

n , is given by a suit-
able average over n-fold iterated Wild’s convolutions. Moreover, one derives a
new bound for ‖ f (·, t) − M‖L1(R). The former one is deduced from an analo-
gous bound expressed in terms of a weighted χ -metric denoted by ||| · ||| whose
definition is quoted in Sec. 6. See, for example, Sec. 14.2 in Rachev.(19) More
precisely one has |||q+

n ( f0) − M ||| ≤ an�+ε where ε is an arbitrary strictly pos-
itive number, a is a suitable constant (which depends on ε) and �(= −1/4), the
least negative eigenvalue for the linearized collision operator, turns out to be the
best possible exponent. A key role in the study developed in Ref. 5 is played by a
probabilistic construction of McKean(17,18) which leads to a very useful expression
for q+

n through the introduction of certain tree graphs (McKean graphs or McKean
binary trees). As far as some problems tackled in Ref. 5 are concerned, it should
be stressed the importance of certain random quantities – i.e. functions defined
on the set of all McKean trees – such as the depth of a leaf and the depth of a
tree. Specifically, it can be shown that the statement of the above-quoted bounds
depends on the structure of the probability distribution of the depth. The McKean
representation expresses q̂+

n as a weighted mean of n-fold “products” (in the sense
of •) of ϕ0:

q̂+
n (x ; ϕ0) =

∑

γ∈G(n)

pn(γ )cγ (x ; ϕ0) (n = 1, 2, . . .). (5)

An explanation of (5) can start from G(n) and γ . Here, G(n) denotes the class of
all McKean graphs with n leaves and γ stands for any of these graphs. They can
be characterized by the fact that each node has either zero or two “children”, a
“left child” and a “right child”. To illustrate the definition, a few elements of G(8)
are visualized in Fig. 1.

As far as the identification of cγ is concerned, consider a sequence of (scat-
tering) angles (θ j ) j≥1 in [0, 2π ) and, for any leaf l at level i of any γ in G(n), look
at the path which connects l and the “root” node , in ascending order. This path
consists of i steps: the first one from l to its “parent” node, the second one from the
“parent” to the “grandparent” of l, and so on. To such a path associate the product
π (l) = α1 . . . αi where αi = α(θi , γ ) equals cos θi if l is a “left child”, or sin θi if l
is a “right child”; αi−1 equals cos θi−1 or sin θi−1 depending on the “parent” of l is,
in turn, a “left child” or not, and so on. To illustrate this construction, consider leaf
l1 in γ1 of Fig. 1. For such a leaf it turns out that i = 3, α3 = sin θ3, α2 = cos θ2,
α1 = cos θ1 and π (l1) = sin θ3 cos θ2 cos θ1. After setting π (l) := 1 if n = 1, it is
worth recalling that equality

∑

l∈γ

π (l)2 = 1 (6)
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Fig. 1. Shaded (unshaded) circles stand for leaves (nodes).
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holds for every γ in G := ⋃
n≥ G(n).(17) After stipulating the above conditions, it

can be shown that cγ can be written as

cγ (x ; ϕ0) =
∫

[0,2π)∞

[
∏

l∈γ

ϕ0(xπ (l))

]

u(dθ )

for every γ in G, u being the product measure on the Borel σ -algebra B∞([0, 2π ))
of the product space [0, 2π )∞ which makes the coordinates stochastically indepen-
dent and identically distributed according to the uniform probability on [0, 2π ).
For this kind of construction, due to Kolmogorov, see, for example, Sec. 36 of
Ref. 2.

Notice that γ can be split into a “left” subgraph γl and a “right” subgraph
γr by removing the “root” node. Moreover, any element γ of G(n) can be viewed
as a tree with leaves labelled, from left to right, with the first n natural numbers.
Specifically, the leaves are assumed to be ordered and labelled in the following way.
The minimal leaf, designated by 1, is the one characterized by the circumstance that
the path joining it to the root contains only “left children”. Number 2 is attached
to the minimal leaf of the right subgraph of the tree having “root” in the “parent”
of leaf 1. The assignment process continues in this way until the completion of
the ordering of the leaves of that very same subgraph. At this stage the process is
extended in the same way to the subgraph of γ which has root in the “grandparent”
of 1, and so on until the “root” of γ is reached. This last circumstance marks the
beginning of the extension of the ordering to the right subgraph of γ , i.e. γr . In
order to illustrate the process just described, note that rearrangement of the leaves
of γ1 in Fig. 1 according to the above ordering leads to assign number 2 to l1 and
number 6 to l2. As far as γ2 is concerned, leaves l1 and l2 must be labelled with 6
and 4, respectively. At this stage one is in a position to define the depth of leaf j
in γ – δ j (γ ) in symbols – as the number of generations which separate j from the
root of γ . In view of this definition, π ( j) can be written as α1 . . . αδ j . The quantity
δ(1)(γ ) := min {δ1(γ ), . . . , δn(γ )} corresponds to the above-mentioned concept of
depth of tree γ .

The probability pn on G(n) induces probability distributions for δ j and for
δ(1). The former one is determined in Proposition 2 of the present paper in the
form

pn{δ j = d} =
∑

k

1

( j − 1)!(n − j)!
|s( j − 1, d − k)| · |s(n − j, k)| (7)

where d = 1, . . . , n − 1 and s(n, k) denotes a Stirling number of the first
kind. (8,9)

The probability distribution of δ j admits a couple of interesting interpreta-
tions. According to the former, the distribution of δ j turns out to be connected
with a well-known urn scheme explained, for istance, in Chapter 8 of Ref. 8.
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Suppose that balls are successively drawn one after the other from an urn initially
containing m white balls. After each trial the drawn ball is placed back in the urn
along with s black balls. Then, if A j denotes the event of drawning a white ball at
the j-th trial, j = 1, . . . , n, setting θ = m/s, one gets

Prob(A j ) = θ

θ + j − 1
( j = 1, . . . , n)

and one can prove that

|s(n, k)|θ k

(θ + n − 1)n
k = 0, 1, . . . , n (8)

coincides with the probability of drawning k balls in n trials. This is the same as
saying that the probability of the event {Y1 + · · · + Yn = k} is given by (8) when
Y1, Y2, . . . form a sequence of independent random variables such that

Prob{Y j = 1} = θ

θ + j − 1
= 1 − Prob{Y j = 0} ( j = 1, 2, . . .).

Going back to (7), one notes that the probability distribution of δ j is the convolution
of two distributions of the same type as (8) with θ = 1. This indicates that δ j

can be thought of as a sum of two independent random variables – say δ j,l and
δ j,r , respectively – δ j,l having distribution (8) with n = j − 1 and δ j,r the same
distribution with (n − j) in place of n, θ = 1 in both cases. The latter interpretation
starts from pointing out that |s(n, k)| represents the number of permutations of
n objects, with k orbits. See, for instance, Ref. 9. With reference to the physical
model of interest, in the former interpretation, one can identify the collision with
the appearance of a white ball. Then, δ j,l (δ j,r , respectively) represents the random
number of collisions of j with particles labelled with 1, . . . , j − 1 (particles
labelled with j + 1, . . . , n, respectively) under the assumption that the collision
process is driven by the above-described urn scheme. In the latter interpretation
one points out that the distribution of δ j,l (δ j,r , respectively) is generated by the
same mechanism as the one which regulates the number of orbits of the random
permutations of ( j − 1) ((n − j), respectively) objects when the same probability
is attributed to all permutations at issue.

Expression (7) is derived through a new algorithm for evaluating pn(γ )
explained in Sec. 2 and through the use of suitable probability generating functions
such as

Vn(x, ξ ) =
n−1∑

d=0

ξ j xd pn{δ j = d}
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which can be written as

Vn(x, ξ ) =
n∑

j=1

(
x + n − j − 1

x − 1

)(
x + j − 2

x − 1

)

ξ j .

Now, for any c in (0, 1), Vn(c/2, 1) plays a fundamental role in Ref. 5, where
it is denoted by T (n), to state the inequality

|||q+
n (·, f0) − M ||| ≤ bT (n) (9)

with b = b( f0). Moreover, the following bound for T (n) is there obtained for any
ε > 0,

T (n) ≤ A(ε)
nε

n1−c
(c = 1 + � = 3/4). (10)

Looking at the expression of A(ε) provided in Ref. 4, p. 386, one notes that
the above bound for T (n) is not valid for ε = 0. In Proposition 8 of the present
paper, by resorting to the above expression of Vn(x, ξ ) one gets an exact simple
formula for T (n), i.e.

T (n) = �(c + n − 1)

�(c)�(n)
. (11)

where, by a well-known expansion of a ratio of gamma functions,

�(c + n − 1)

�(c)�(n)
= 1

�(c)
n�

{

1 + �(� − 1)

2n
+ O

(
1

n2

)}

.

See also next Sec. 6 for more detail. Hence, combination of (9) with (11)
gives

|||q+
n (·, f0) − M ||| ≤ b

�(c)

1

n
1
4

∣
∣
∣
∣1 + 5

32n
+ O

(
1

n2

)∣
∣
∣
∣ (12)

which, thanks to the elimination of ε, sharpens the basic inequality (2.16) in Ref. 5.
Bound (10) is also used, in Theorem 3.1 of Ref. 5, to estimate the coefficient

(1 − pn,k) of the “smooth” component in a decomposition of q+
n ,

pn,k ≤
(

A

(c/2)k−1

)

n−(1−2c) (13)

which holds true for every strictly positive c, and for some suitable constant
A. Thanks to (11), (13) can be replaced with a new more precise inequality,
i.e.

pn,k ≤ 2k+ε

(k − 1)!

{C + log(n − 1)}k−1

n − 1
(14)
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where ε is any strictly positive number and C is the Euler–Mascheroni constant.
The paper is organised as follows. Section 2 explains the above-mentioned

algorithm for the actual assessment of the probability distribution pn(γ ), γ ∈
G(n) and n = 1, 2, . . .. Section 3 includes a description of a simple probabilistic
framework which is useful for a precise formulation of the concept of depth.
The exact form of the probability distribution (7) of the depth of a leaf is then
deduced in Sec. 4. A few hints to the study of the probability distribution of the
depth of a tree are given in Sec. 5. This distribution is involved in the aforesaid
decomposition of q+

n . The preliminary study of the law at issue yields the first term
of a distinguished asymptotic expansion that we intend to develop and present in
a separate paper, together with an analysis of the law of the height of a tree which
is of interest, for example, in random search trees considered in computer science.
Finally, Sec. 6 contains the proofs of (12) and (14).

2. EVALUATION OF pn(γ )

The problem of determining pn(γ ) in (5) can be solved by returning to (3)–(4)
after putting

I(x ; t, u) =
∑

n≥0

{u(1 − e−t )}nq̂+
n+1(x ; ϕ0)

for every t ≥ 0, x in R and u in [0, 1]. In fact, by (3)

I(x ; t, u) = ϕ0(x) +
∑

n≥1

{u(1 − e−t )}n 1

n

n∑

k=1

1

2π

·
∫ 2π

0
q̂+

k (x cos θ ; ϕ0)q̂+
n−k+1(x sin θ ; ϕ0) dθ

which, by the Cauchy notion of product of series and the identity n−1 =
∫ 1

0 σ n−1dσ , becomes

I(x ; t, u) = ϕ0(x) + (1 − e−t )
∫ u

0

{
1

2π

∫ 2π

0
I(x cos θ ; t, σ )

·I(x sin θ ; t, σ )dθ

}

dσ u ∈ [0, 1]. (15)

Setting

ϕ̃(x ; t, u) = {1 − u(1 − e−t )}I(x ; t, u)

and substituting in Eq. (15) gives

ϕ̃(x ; t, u) = {1 − u(1 − e−t )}ϕ0(x) + u(1 − e−t )

·
∫ u

0

{
1

2π

∫ 2π

0
ϕ̃(x cos θ ; t, σ )ϕ̃(x sin θ ; t, σ )dθ

}

g(σ ; u, t)dσ (16)
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where g stands for the probability density function

g(σ ; u, t) = 1 − u(1 − e−t )

u {1 − σ (1 − e−t )}2
(0 < σ < u)

supported by (0, u). It is clear that the solution of the primary problem (1) can be
obtained from the solution of (16) by setting

ϕ(x, t) = ϕ̃(x ; t, 1) (x ∈ R, t ≥ 0).

Solving (16) instead of the primary problem has the advantage of bringing out
a method for the determination of pn which mimics the procedure to determine
n-fold Wild convolutions. Specifically, think of (16) as fixed point problem and
iterate to obtain

ϕ̃(x ; t, u) =
∑

n≥1

∑

γ∈G(n)

p̃n(γ ; t, u)cγ (x ; ϕ0)

with

p̃|γ |(γ ; t, u) := {1 − u(1 − e−t )}{u(1 − e−t )}|γ |−1 p|γ |(γ ) (γ ∈ G),

together with the fundamental relationship

p̃|γ |(γ ; t, u) = u(1 − e−t )
∫ u

0
p̃|γl |(γl ; t, σ ) p̃|γr |(γr ; t, σ )g(σ ; u, t)dσ (17)

where |γ | denotes the number of leaves of γ . After splitting both γl and γr in the
same way, the process can be continued till one reaches leaves in the deepest level.
Notice that, since p|γ |(γ ) = 1 if γ ∈ G(1), one has p̃1(γ ; t, u) = 1 − u(1 − e−t ).
These facts suggest the following procedure for the calculation of the pn in a tree
γ with n leaves and deepest level equal to i . Introduce the operation

f1 ∗ f2(σ ) := σ (1 − e−t )
∫ σ

0
g(x ; σ, t) f1(x, t) f2(x, t)dx

for any pair of function f1 and f2 defined on (0, 1) × (0,+∞) in such a way that
the integral is finite. Next, set λ1(u, t) := {1 − u(1 − e−t )} in each of the leaves of
γ , find the leftmost pair of leaves at level i , erase this pair of leaves which makes
the former “parent” node a leaf, and write down λ2(u, t) := λ1(·, t) ∗ λ1(·, t)(u)
in the new leaf. After erasing all the leaves at level i , in this way, proceed to erase
pairs of leaves at level (i − 1) and, for any pair, write down

λ3(u, t) := λl(·, t) ∗ λr (·, t)(u) (18)

in the leaf which replaces the corresponding “parent” node, where l (r , respec-
tively) can be 1 or 2 according to whether the left (right, respectively) leaf of the
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pair was a leaf of γ or the “parent” node of a pair erased in the previous step.
Then, after erasing all the leaves at level (i − 1), proceed to erase pairs of leaves
at level (i − 2) in the same way and, for any pair, write down (18) in the leaf
which replaces its “parent” node, keeping in mind that both l and r can belong
to {1, 2, 3}. Once this has been done until only the “root” is left, one has written
p̃|γ |(γ ; t, u) in the “root”.

Example 1. Consider tree γ1 in Fig. 1, where n = 8 and i = 4. One wants to
evaluate p8(γ1). According to the above procedure, one starts with the number to
be written in the parent node appearing at level 3:

σ3(1 − e−t )
∫ σ3

0
{1 − σ4(1 − e−t )}2 1 − σ3(1 − e−t )

σ3{1 − σ4(1 − e−t )}2
dσ3

= σ3(1 − e−t ){1 − σ3(1 − e−t )}.
Now there are three subgraphs with leaves at level 3 (see Fig. 2). After erasing
their leaves, one has the following values in the leaves named 1, 2, 3, 4:

σ2(1 − e−t ){(1 − e−t )},
1 − σ2(1 − e−t ),

σ2(1 − e−t )
∫ σ2

0
{1 − σ3(1 − e−t )}2σ3(1 − e−t )

1 − σ2(1 − e−t )

σ2{1 − σ3(1 − e−t )}2
dσ3

= 1

2
{σ2(1 − e−t )}2{1 − σ2(1 − e−t )},

Fig. 2. Scheme for the evaluation of P8(γ1) in Example 1.



Some New Results for McKean’s Graphs with Applications to Kac’s Equation 957

and

σ2(1 − e−t )(1 − σ2){(1 − e−t )}.
respectively. So, only two graphs remain. They must be erased and their values are
written in A and B, respectively:

1

2
{σ1(1 − e−t )}2{1 − σ1(1 − e−t )} (value of γ1l)

1

2 · 4
{σ1(1 − e−t )}4{1 − σ1(1 − e−t )} (value of γ1r ).

Hence,

p̃8(γ1; t, u) = u(1 − e−t )
1

2 · 2 · 4

∫ u

0
{1 − σ1(1 − e−t )}2

{σ1(1 − e−t )}6 1 − u(1 − e−t )

u{1 − σ1(1 − e−t )}2
dσ1

= 1

2 · 2 · 4 · 7
{u(1 − e−t )}7 · {1 − u(1 − e−t )}

and

p8(γ1) = 1

24 · 7
.

It should be observed that
∑

γ∈G(n)

pn(γ ) = 1 (19)

holds for every n = 1, 2, . . .. In fact, combination of (3) and (5), recalling that ϕ

is a characteristic function, gives

1 = ϕ(0, t) =
∑

n≥1

e−t (1 − e−t )n−1
∑

γ∈G(n)

pn(γ )

i.e.

1

1 − ξ
=

∑

n≥1

ξ n−1
∑

γ∈G(n)

pn(γ ) (ξ = 1 − e−t ). (20)

Now write (1 − ξ )−1 = ∑
n≥1 ξ n−1 for every ξ in (0, 1) to conclude that the

coefficient of ξ n−1 in the right-hand side of (20) equals one for every n = 1, 2, . . ..
Further relevant properties of the pn will be discovered and studied in the

next sections.
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3. PROBABILISTIC FRAMEWORK

Before proceeding to the proof of the main results, it is worthwhile trying to
introduce a suitable probabilistic setting. As a matter of fact, positivity of the p̃|γ |
and (19) lead to think of p̃|γ |(γ ; t, 1) as the probability of running into tree γ , i.e.
into a specific physical situation. In view of this, look at G as a space of outcomes
and, since G is countable, consider the class G of all subsets of G as the family
of all events pertaining to an ideal experiment with outcomes in G. Examples of
significant events will be described in connection with a few relevant instances of
random elements, i.e. functions defined on G. First consider the random number ν

defined to be the function from G to N = {1, 2, . . .} which to each γ in G assigns
the number |γ | of leaves. As far as the depth δ j = δ j (γ ) is concerned, stipulate
that δ j (γ ) = 0 both if j > |γ | and if |γ | = 1 = j . It should be observed that the
random vector (ν, δ1, . . . , δ|γ |) is a one-to-one mapping of G into the range. Thus,
each element of G can be characterized through a specific determination of such
a random vector. In the previous notation, the depht of a tree, or minimal depth, is
defined to be the random number

γ �→ δ(1)(γ ) := min{δ1(γ ), . . . , δ|γ |(γ )} (γ ∈ G)

and the height of a tree by

γ �→ δ(|γ |)(γ ) := max{δ1(γ ), . . . , δ|γ |(γ )} (γ ∈ G).

Once the measurable space (G,G) has been specified, in order to define on it
a probability measure P (t) which is consistent with the coefficients p̃n(γ ; t, 1)
appearing in the expression of ϕ̃(x ; t, 1), it is enough to put

P (t)(A) :=
∑

γ∈A

e−t (1 − e−t )|γ |−1 p|γ |(γ ) (A ⊂ G).

This, in turn, yields

P (t)({γ }) = e−t (1 − e−t )|γ |−1 p|γ |(γ ) (γ ∈ G),

P (t)(G(n)) =
∑

γ∈G(n)

P (t)({γ })

=
∑

γ∈G(n)

e−t (1 − e−t )n−1 pn(γ )

= e−t (1 − e−t )n−1 (in view of (19)).

Since G(n) = {ν = n}, it turns out that the probability distribution P (t)
ν of ν is

characterized by

P (t)
ν ({n}) = e−t (1 − e−t )n−1 (n = 1, 2, . . .).
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The computation of the probability distributions of depths is more involved and
will be considered in next Secs. 4 and 5. It is based on specific difference equa-
tions concerned with conditional probabilities. In order to pave the way for their
understanding, note that, under P (t), pn(γ ) represents the conditional probability
of {γ } given that γ is assumed to belong to G(n), that is

P (t) ({γ } | G(n)) = P (t)({γ } ∩ G(n))

P (t)(G(n))

= e−t (1 − e−t )n−1 pn(γ )

e−t (1 − e−t )n−1
(γ ∈ G)

with pn(γ ) = 0 if γ �∈ G(n). Hence, for any A ⊂ G,

P (t)(A | G(n)) =
∑

γ∈A∩G(n)

pn(γ ).

In general, the evaluation of probability P (t) is made sensibly easy by the use of
(17). As an example, one provides a new brief proof of an important result stated
in Ref. 4 as Lemma 2.1. It says that, for every n, the probability distribution of the
number of leaves in the left subgraph γl of a graph γ with n leaves is uniform.
After defining the random number ν(l) by ν(l)(γ ) = |γl | for every γ in G, one can
restate the previous result in the following form:

P (t)(ν(l) = j | G(n)) = 1

n − 1
( j = 1, . . . , n − 1; n = 2, 3, . . .). (21)

In fact, P (t){ν(l) = j, ν = n} = P (t){ν(l) = j, ν(r ) = n − j} holds true for every
j in {1, . . . , n − 1}, provided that {r1, r2} is understood as a simplified form for
r1 ∩ r2. Now, by (17) with u = 1, and the ensuing discussion,

P (t){ν(l) = j, ν(r ) = n − j} = (1 − e−t )
∫ 1

0
{1 − σ (1 − e−t )}

·{σ (1 − e−t )} j−1 · {1 − σ (1 − e−t )}
·{σ (1 − e−t )}n− j−1 · g(σ ; 1, t)dσ

= 1

n − 1
e−t (1 − e−t )n−1 = 1

n − 1
P (t){ν = n} (22)

which proves (21).
In view of the obvious equality

P (t)(ν(l) = 0 | G(1)) = 1
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and from (22) one gets

P (t){ν(l) = j} =
∑

n≥1

P (t)(ν(l) = j | G(n))e−t (1 − e−t )n−1.

Thus,

P (t){ν(l) = 0} = e−t

whilst, for any j in N,

P (t){ν(l) = j} = e−t (1 − e−t ) j
∑

n≥0

(1 − e−t )n

n + j
. (23)

The series in the right-hand side of (23), as a function of (1 − e−t ), is named
Lerch trascendent, denoted by φ(1 − e−t , 1, j). It admits an integral representation
leading to

P (t){ν(l) = j} = e−t (1 − e−t ) jφ(1 − e−t , 1, j)

= e−t (1 − e−t ) j

∫ +∞

0

e−( j−1)x

ex − 1 + e−t
dx ( j = 1, 2, . . .). (24)

Moreover,

lim
t→+∞

φ(1 − e−t , 1, j)

t
= 1

holds for every j in N. See, for example, Ref. 16.

4. DISTRIBUTION OF THE DEPTH OF A LEAF

The present section, as well as the next one, is concerned with some results
on the depth of a leaf and of a tree, respectively, to be used in the study of the
convergence of Wild’s sums. On account of this, the first part deals with the
meaning of depth of a leaf in connection with the notion of Wild’s n-fold product.
For the sake of explanatory clearness, refer to the particular graph γ1 of Fig. 1
which has linked to it the n-fold “product”

(((ϕ0 • ϕ0) • ϕ0) • (((ϕ0 • ϕ0) • ϕ0) • (ϕ0 • ϕ0))) .

This representation shows that the one-to-one correspondence between G(n) and
the set of all n-fold “products” regards, in point of fact, the correspondence between
G(n) and “bracketings”, the arrangement of brackets being crucial because of the
nonassociativity of the Wild convolution. Notice that the number of enclosures
coincides with the number of nodes of the corresponding graph. Assigning to each
ϕ0, appearing in a specific “product”, the number which marks the corresponding
leaf in the tree linked to such a product, makes clear that the depth of the leaf at
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issue equals the number of the pairs of brackets which enclose the ϕ0 labelled in the
aforesaid way. Enclosures, in each graph, as explained in Sec. 13 of Ref. 18, are,
in turn, associated with collisions in pairs of particles according to the ramification
of each graph. Thus the depth of leaf j can be thought of as the number of the
collisions of the corresponding molecule with the remaining (n − 1) particles in
the same bath. Firstly, one considers the problem of determining

P (t)(δ j = d | G(n)) =
∑

γ∈{δ j =d}∩G(n)

pn(γ )

for any integer d in N0. After extending pn , by additivity, to any subset of G, one
has

P (t)(δ j = d | G(n)) =: pn{δ j = d}
= 11{0}(d) if n = 1

while, for any n ≥ 2,

pn{δ j = d} =
∑

k

pn({δ j = d} ∩ {γ ∈ G(n) : |γl | = k}) (25)

=
∑

k

pn(δ j = d | γ ∈ G(n), |γl | = k)pn {γ ∈ G(n), |γl | = k}

=
n−1∑

k=1

pn(δ j = d | γ ∈ G(n), |γl | = k)
1

n − 1
(from (21)).

Moreover,

pn(δ j =d | γ ∈ G(n), |γl |=k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pn(δ j (γl) = d − 1 | γ ∈ G(n), |γl | = k)

if k ≥ j

pn(δ j−k(γr ) = d − 1 | γ ∈ G(n), |γl | = k)

if k < j

where, from (17) and its direct consequences explained in Sec. 2,

pn(δ j (γl) = d − 1 | γ ∈ G(n), |γl | = k) = pk{δ j = d − 1} (26)

and

pn(δ j−k(γr ) = d − 1 | γ ∈ G(n), |γl | = k) = pn−k{δ j−k = d − 1}. (27)

These elementary facts can be used , together with the method of generating
functions, to prove
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Proposition 2. For any n in N, let j and d be elements of {1, . . . , n} and
{0, . . . , n − 1}, respectively. Then,

P (t)(δ j = d | G(1)) = 11{0}(d)

and, for any n = 2, 3, . . .,

P (t)(δ j = d | G(n)) =
∑

k

1

( j − 1)!(n − j)!
|s( j − 1, d − k)| · |s(n − j, k)|

where s(n, k) denotes a Stirling number of the first kind (hence, s(0, 0) = 1,
s(n, 0) = 0 if n > 0 and s(n, k) = 0 if k > n).

The Stirling numbers of the first and second kind are the coefficients of
the expansions of the factorials into powers and of the powers into factorials,
respectively. In particular,

(t)n : = t(t − 1) . . . (t − n + 1) =
n∑

k=0

s(n, k)t k n = 1, 2, . . .

= 1 if n = 0.

See Chapter 8 of Ref. 8 for a comprehensive treatment of Stirling numbers.

Proof of Proposition 2: It is enough to deal with the case of n ≥ 2. Combine
(25) with (26)–(27) to obtain

(n − 1)pn{δ j = d} =
j−1∑

k=1

pn−k{δ j−k = d − 1} +
n−1∑

k= j

pk{δ j = d − 1} (28)

for every j = 1, . . . , n, with
∑0

k=1 = ∑n−1
k=n := 0. Multiply (28) by xd and sum

over d = 0, . . . , n − 1 to obtain

(n − 1)g j,n(x) = x

⎧
⎨

⎩

j−1∑

k=1

g j−k,n−k(x) +
n−1∑

k= j

g j,k(x)

⎫
⎬

⎭

with

g j,n(x) :=
n−1∑

d=0

pn{δ j = d}xd j = 1, . . . , n; n = 2, 3, . . .

g1,1(x) = 1. (29)
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Now multiply both sides of the last difference equation by ξ j and sum over
j = 1, . . . , n. After setting

Vn(x, ξ ) :=
n∑

j=1

ξ j g j,n(x) n = 2, 3, . . .

V1(x, ξ ) := ξ (30)

one gets

(n − 1)Vn(x, ξ ) = x
n−1∑

j=1

(1 + ξ n− j )Vj (x, ξ ).

Finally, take any x and ξ in the unit disk, multiply the above equation by zn with
|z| < 1, sum over n = 2, 3, . . . and put

V (z; x, ξ ) :=
∑

n≥2

zn Vn(x, ξ ). (31)

This gives
∑

n≥2

(n − 1)Vn(x, ξ )zn = 1 + ξ − 2ξ z

(1 − z)(1 − zξ )
xzV (z; x, ξ ) + 1 + ξ − 2ξ z

(1 − z)(1 − zξ )
ξ xz2

i.e.

z
∂

∂z
V (z; x, ξ ) =

(

1 + 1 + ξ − 2ξ z

(1 − z)(1 − zξ )
xz

)

V (z; x, ξ ) + 1 + ξ − 2ξ z

(1 − z)(1 − zξ )
ξ xz2.

For any z in (0, 1), the general solution of this equation can be written as

V (z; x, ξ ) = z

((1 − z)(1 − zξ ))x {c − ξ ((1 − z)(1 − zξ ))x }

and, in view of well-known expressions for the Stirling numbers (see, for example,
Ref. 9), one obtains

V (z; x, ξ ) = cz
∑

n≥0

zn
n∑

k=0

ξ k 1

(n − k)!k!

n−k∑

j=0

|s(n − k, j)|x j
k∑

r=0

|s(k, r )|xr − zξ

where, in view of (31), the coefficient of z must be zero, which is tantamount to
saying that c must equal ξ . Hence,

V (z; x, ξ ) =
∑

n≥2

zn
n∑

j=1

ξ j 1

(n − j)!( j − 1)!

n− j∑

k=0

|s(n − j, k)|xk
j−1∑

r=0

|s( j − 1, r )|xr

=
∑

n≥2

zn
n∑

j=1

ξ j 1

(n − j)!( j − 1)!

∑

d≥0

xd
∑

k+r=d

|s(n − j, k)||s( j − 1, r )|
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which, via (31), entails

Vn(x, ξ ) =
n∑

j=1

ξ j 1

(n − j)!( j − 1)!

∑

d≥0

xd
∑

k

|s(n − j, k)| · |s( j − 1, d − k)|

and, via (30),

g j,n(x) =
∑

d≥0

xd 1

(n − j)!( j − 1)!

∑

k

|s(n − j, k)| · |s( j − 1, d − k)|.

At this stage, compare this expression with (29) to complete the proof. �

By resorting to the former of the interpretations of (7) given in Sec. 1, it is
immediate to prove

Proposition 3. For any n in N\ {1}:

En(δ1) = 1

n − 1
+ 1

n − 2
+ · · · + 1

2
+ 1 = En(δn)

and

En(δ j ) = 1 + 1

2
+ · · · + 1

( j − 1)
+

{

1 + · · · + 1

(n − j)

}

if 1 < j < n. Analogously,

Varn(δ j ) = 1

2
· 1

2
+ · · · + 1

n − 2
· n − 3

n − 2
· 1

n − 1
· n − 2

n − 1
= V arn(δn)

and

Varn(δ j ) =
j−1∑

k=1

1

k

(

1 − 1

k

)

+
n− j∑

k=1

1

k

(

1 − 1

k

)

.

This section continues with some results concerning the (unconditional)
distribution of δ j . In other words, one wants to determine P (t){δ j = d} for any j
in N and for every d in N0 := N ∪ {0}. Clearly,

P (t){δ j = d} =
∑

n≥1

e−t (1 − e−t )n−1 · pn{δ j = d}

= 11{0}(d)
∑

n< j

e−t (1 − e−t )n−1 + 11N(d)
∑

n≥ j

e−t (1 − e−t )n−1

· 1

( j − 1)!(n − j)!

∑

k

|s( j − 1, d − k)| · |s(n − j, k)|
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= 11{0}(d)
{
1 − (1 − e−t ) j−1

} + 11N(d)
e−t

( j − 1!)
(1 − e−t ) j−1

·
∑

k

|s( j − 1, d − k)| ·
∑

σ

|s(σ, k)|
σ !

(1 − e−t )σ

= 11{0}(d)
{
1 − (1 − e−t ) j−1

} + 11N(d)(1 − e−t ) j−1 e−t

( j − 1!)

·
∑

k

|s( j − 1, d − k)| t k

k!

(see Corollary 8.1 in Ref. 8).

Hence, one is in a position to state

Proposition 4. For any j in N and d in N0 one has

P (t){δ j = d} =

⎧
⎪⎨

⎪⎩

1 − (1 − e−t ) j−1 if d = 0

(1 − e−t ) j−1
d∧( j−1)∑

m=0

|s( j − 1, m)|
( j − 1)!

· e−t t d−m

(d − m)!
if d ∈ N

which entails

P (t)(δ j = d | ∪n≥ j G(n)) =
d∧( j−1)∑

m=0

|s( j − 1, m)|
( j − 1)!

· e−t t d−m

(d − m)!
(d ∈ N).

The last expression says that the conditional probability distribution of δ j , under
the hypothesis that a tree has at least j leaves, is the same as the distribution
of the sum of two independent random variables, the former being distributed
according to (8) with θ = 1, n = j − 1, the latter having the Poisson distribution
with parameter t . Thus,

E (t)(δ j | ∪n≥ j G(n)) = 1 + · · · + 1

j − 1
+ t

Var(t)(δ j | ∪n≥ j G(n)) = 1

2
· 1

2
+ · · · + 1

j − 1
·
(

1 − 1

j − 1

)

+ t if j ≥ 2

and

E (t)(δ1) = E (t) (δ1 | ∪n≥1G(n)) = t

Var(t)(δ1) = Var(t) (δ1 | ∪n≥1G(n)) = t
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which entails

Proposition 5. For any j in N\ {1} and d in N0, one has

E (t)(δ j ) =
{

1 + · · · + 1

j − 1
+ t

}

(1 − e−t ) j−1

and

Var(t)(δ j ) = (1 − e−t ) j−1

[
1

2
· 1

2
+ · · · + 1

j − 1
·
(

1 − 1

j − 1

)

+ t

+(1 − (1 − e−t ) j−1) ·
(

1 + · · · + 1

j − 1
+ t

)2
]

.

5. REMARKS ABOUT THE DISTRIBUTION OF THE DEPTH

OF A TREE

Recall that the term depth of a tree designates the random variable δ(1) as
defined in Secs. 1 and 3. In some branches of science an important role is played
by the concept of height of a tree which corresponds to the random variable

γ �→ δ(|γ |)(γ ) := max{δ1(γ ), . . . , δ|γ |(γ )} (γ ∈ G).

See, for example, Refs. 14, 15, and 20, and the references quoted therein. In
computer science research, the knowledge of the probability distribution of δ(|γ |)
is required in connection with data compression schemes. Here, one hints to
the computation of the probability distribution of δ(1) in order to get a slight
improvement in decomposition (3.1) in Ref. 5. For further motivation, see the final
part of the next section. The above-quoted arguments can be worked out to tackle
the problem of approximating the distribution of δ(1). Thus, the resulting approach
will be developed in a forthcoming paper. A starting point for determining exact
forms of the distribution of δ(1) is contained in the following

Proposition 6. Set

qn,k := P (t)(δ(1) ≥ k | G(n)) (32)

for any k = 0, 1, . . . and n = 1, 2, . . .. Then, the recursion relation

qn,k = 1

n − 1

n−1∑

ν=1

qν,k−1qn−ν,k−1
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holds for every k = 1, 2, . . . and n = 1, . . ., with the initial condition qn,0 = 1
(n = 1, 2, . . .). Moreover, qn,k = 0 if n < 2k , and

ψk(z) = 1

z

∑

n≥2k

znqn,k (|z| < 1)

satisfies

ψ ′
k(z) = ψ2

k−1(z) (|z| < 1, k = 1, 2, . . .)

with the initial condition ψ0(z) = (1 − z)−1 for |z| < 1.

Proof: The nonlinear recursion relation is a direct consequence of the definition
of δ(1) combined with the usual computational method for conditional probabilities
described in Secs. 2–3. To get the above differential equation, multiply (n −
1)qn,k = ∑n−1

ν=1 qν,k−1qn−ν,k−1 by zn and sum over n = 2, 3, . . . to obtain

∑

n≥2

nznqn,k −
∑

n≥2

znqn,k =
∑

n≥2

zn
n−1∑

ν=1

qν,k−1qn−ν,k−1

=
∑

ν≥1

qν,k−1zν
∑

n≥1+ν

zn−νqn−ν,k−1

= z2ψk−1(z) (k = 1, 2, . . .)

i.e.

z
d

dz
[zψk(z)] − zψk(z) = z2ψk−1(z).

�

A recursion relation of the same type as (32) can be found in Ref. 15 in
connection with the probability law of δ(|γ |). In Ref. 1, Proposition 6 is utilized
to determine an exact expression for the probability distribution of δ(1). Here, one
gives an upper bound for pn{δ(1) ≤ d}.

For the sake of notational simplicity, set

A j (d) := {δ j ≤ d} and Ai1,...,im (d1, . . . dm) := Ai1 (d1) ∩ · · · ∩ Aim (dm).

Then, one can write

pn{δ(1) ≤ d} = pn

⎛

⎝
n⋃

j=1

A j (d)

⎞

⎠
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and, from the inclusion and exclusion principle (see, e.g., Sec. 4.5 in Ref.11),

pn

⎛

⎝
n⋃

j=1

A j (d)

⎞

⎠ =
n∑

j=1

pn(A j (d)) −
∑

1≤ j1< j2≤n

pn(A j1, j2 (d, d) + · · ·

+(−1)n−1 pn(A1,...,n(d, . . . , d)).

At this stage, the Bonferroni inequalities (see Ref. 11 once again)

pn{δ(1) ≤ d} ≤
n∑

j=1

pn(A j (d))

pn{δ(1) ≤ d} ≥
n∑

j=1

pn(A j (d)) −
∑

1≤ j1< j2≤n

pn(A j1, j2 (d, d))

pn{δ(1) ≤ d} ≤
n∑

j=1

pn(A j (d)) −
∑

1≤ j1< j2≤n

pn(A j1, j2 (d, d))

−
∑

1≤ j1< j2< j3≤n

pn(A j1, j2, j3 (d, d, d))

· · · · · · · · ·

say that if one stops the inclusion and exclusion formula after an even (odd,
respectively) number of sums one gets a lower (upper, respectively) bound. Here,
one confines oneself to exhibiting an exact form for the first sum, derived from
Proposition 2 via well-known properties of Stirling’s numbers.

Proposition 7. The following equality is valid for every d in N:

n∑

j=1

pn{δ j ≤ d} = 1

(n − 1)!

d∑

ν=0

2ν |s(n − 1, ν)| .

Moreover, setting Bn(d) := {C + log(n − 1)}d−1/(n − 1), where C stands for the
Euler–Mascheroni constant, given any ε > 0 there is n̄ in N such that

pn{δ(1) ≤ d} ≤ 2d+ε

(d − 1)!
Bn(d)

holds for all n ≥ n̄.
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Proof: By elementary arguments,

n∑

j=1

pn{δ j ≤ d}

=
n∑

j=1

d∑

ν=0

pn

{
δ j = ν

}

=
n∑

j=1

d∑

ν=0

∑

k

1

( j − 1)!(n − j)!
· |s( j − 1, ν − k)| · |s(n − j, k)|

(from Proposition 4)

=
d∑

ν=0

∑

k

1

(n − 1)!

∑

j

(
n − 1

j − 1

)

· |s( j − 1, ν − k)| · |s(n − j, k)|

=
d∑

ν=0

∑

k

1

(n − 1)!

∑

j

(
n − 1

j

)

· |s( j, ν − k)| · |s(n − j − 1, k)|

= 1

(n − 1)!

d∑

ν=0

∑

k

(
ν

k

)

· |s(n − 1, ν)| (see, e.g., Sec. 8.7 of Ref. 8)

= 1

(n − 1)!

d∑

ν=0

2ν |s(n − 1, ν)| .

Passing to the second part, recall that the Stirling numbers of the first kind admit
asymptotic expressions such as

|s(n + 1, k + 1)| ∼ n!
[log(n + 1) + C]k

k!
.

See Ref. 8. Then,

1

(n − 1)!

d∑

ν=0

2ν |s(n − 1, ν)| ∼ 2d

(d − 1)!

1

n − 1
{C + log(n − 1)}d−1 (n → +∞)

which, combined with Bonferroni’s inequalities, completes the proof. �

For an alternative upper bound for pn{δ(1) ≤ d}, see Ref. 1. In any case,
in order to get sharper evaluations of qn,k , one ought to investigate the order of
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smallness of sums
∑

1≤i1<···<im≤n

pn(Ai1,...,im (d1, . . . , dm))

whose exact expression could be deduced from multivariate generating functions.
This subject will be developed in the paper at the present time being prepared,
previously mentioned.

6. APPLICATION TO RATES OF CONVERGENCE OF WILD SUMS

In seeking bounds on the error made when the Wild summation for solutions
of the Boltzmann equation for a gas of Maxwellian molecules is truncated at the
nth stage, in Refs. 4 and 5 one puts special emphasis on the expectation T (n),
with respect to pn , of the random variable W (γ ) := ∑n

j=1(c/2)δ j (γ ) when c is any
element of interval (0, 1),

T (n) := En(W ) =
n∑

j=1

En

((
c

2

)δ j
)

where En represents expectation with respect to pn . From the previous analysis
based on generating functions, it easily follows that T (n) is nothing else than the
value at (x, ξ ) = (c/2, 1) of Vn(x, ξ ), i.e.

T (n) = Vn(c/2, 1) (n ∈ N).

Lemma 1.4 in Ref. 4 states the upper bound (10) for Tn . As far as the computation
of A(ε) is concerned, in the proof of this lemma one defines

N0 = min

{

n ∈ N :
c

c + ε

(
n

n − 1

)1−c−ε

≤ 1

}

=
〈

1 + 1
(

c+ε
c

)1−c−ε − 1

〉

with 〈x〉 standing for the smallest integer ≥ x , and one obtains

A(ε) = max{k1−c+εT (k) : k = 1, . . . , N0}. (33)

Notice that, in view of the definition of N0, (10) would be devoid of sense for
ε = 0. In any case, the importance of (10) is that it leads to state Theorem 1.9 in
Ref. 4 in the following form: If φ is any convex functional on probability density
functions such that

φ( f ◦ g) ≤ c

2
(φ( f ) + φ(g)) (34)
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is in force for all pairs ( f, g) of densities with zero mean and unit variance and
for some c in (0, 1), then for any ε > 0 there is a constant b such that

φ(q+
n (·; f0)) ≤ bA(ε)

nε

n1−c
. (35)

Moreover, in Ref. 5, which deals with the Kac model, one considers all probability
densities with finite forth moment, and one determines a distinguished convex
functional φ∗ satisfying (34) with c = � + 1 + η, � (= −1/4) being the least
negative eigenvalue of the operator L defined in Sec. 1 of Ref. 5, and η being any
positive number satisfying 0 < � + 1 + η < 1. It is important to recall that φ∗

satisfies

φ∗(q+
n (·, f0)) = |||q+

n (·, f0) − M |||
with M = M(x) = (2π )−1/2 exp{−x2/2}, x ∈ R, and

|||g||| = sup
ξ �=0

∣
∣
∫

R
eiξ x g(x)dx

∣
∣

ξ 4

whenever
∫

R
xk g(x)dx = 0 if k = 0, 1, 2, 3 and

∫

R
x4 |g(x)| dx < +∞. Hence,

from (35) with c = � + 1 + η, and in view of the arbitrariness of η, one can write

|||q+
n (·, f0) − M ||| ≤ bA(ε)n�+ε (36)

which expresses the decay of the error in norm ||| · |||. See Theorem 2.2 in Ref. 5.
The above description is enough to point out that (36) could be improved if it

were possible to replace (10) with a more accurate estimate of T (n). As a matter
of fact, this can be done by virtue of the arguments developed in Sec. 4.

Proposition 8. For every x and c in (0, 1) one has

Vn(x, ξ ) =
n∑

j=1

ξ j
∑

k

|s(n − j, k)|
(n − j)!

xk
∑

m

|s( j − 1, m)|
( j − 1)!

xm

=
n∑

j=1

(
x + n − j − 1

x − 1

)(
x + j − 2

x − 1

)

ξ j

and, therefore,

T (n) := Vn

( c

2
, 1

)
=

(
c − 2 + n

c − 1

)

= �(c + n − 1)

�(c)�(n)

which admits the asymptotic expansion

T (n) ∼ 1

n1−c

1

�(c)

∑

k≥0

Ak(1 − c)n−k (n → ∞)
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with

A0(1 − c) ≡ 1, Ak(1 − c) = 1

k

k−1∑

m=0

(
1 − c − m

k − m + 1

)

Am(1 − c) (k = 1, 2, . . .).

Recall that the above asymptotic expansion must be understood in the sense
that

T (n) = 1

n1−c

1

�(c)

{

1 + A1(1 − c)
1

n
+ · · · + AN (1 − c)

1

nN

}

+o

(
AN (1 − c)

�(c)

1

nN+1−c

)

(n → ∞).

Proof of Proposition 8: From Sec. 4,

Vn(x, ξ ) =
n∑

j=1

ξ j M j , M j :=
∑

d≥0

xd
∑

k

|s(n − j, k)|
(n − j)!

|s( j − 1, d − k)|
( j − 1)!

.

Therefore, M j is the probability generating function of the convolution of proba-
bilities |s(n − j, k)|/(n − j)! with probabilities |s( j − 1, m)|/( j − 1)! and, hence,
it coincides with the product of the generating functions of these sequences, i.e.:

M j = (n − j − 1 + x)n− j

(n − j)!

( j − 2 + x) j−1

( j − 1)!
=

(
x + n − j − 1

x − 1

)(
x + j − 2

x − 1

)

.

In particular,

Vn(x, 1) =
n∑

j=1

(
x + n − j − 1

x − 1

)(
x + j − 2

x − 1

)

=
(

2x + n − 2

2x − 1

)

and

T (n) = Vn

(
c

2
, 1

)

=
(

c + n − 2

c − 1

)

= �(c + n − 1)

�(c)�(n)
.

Finally, the second part of Proposition 8 follows from the asymptotic expansion
of a ratio of gamma functions proved in Ref. 21. �

Now, thanks to Proposition 8, with 1 − c = 1/4, and the brief discussion
before it, Theorem 2.2 in Ref. 5 can be restated in a sharper form as it follows:

For any probability density f0 satisfying
∫

R
x4 f0(x) dx < +∞ there is a

finite constant a′ so that for all n,

|||q+
n (·, f0) − M ||| ≤ a′n�.
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For the definition of a′, see (12) and Proposition 8.
The final remark is about an application of Proposition 7. As mentioned in

Sec. 1, such an application is related to a decomposition of q+
n proved in Ref. 5.

Indeed, it turns out that q+
n can be written as a mixture (i.e., a convex combination)

of probability density functions Bn,k and Un,k with weights

qn,k+1 = P (t)(δ(1) ≥ k + 1 | G(n))

and

pn,k := 1 − qn,k+1

respectively. Now, since Bn,k is “smooth”, qn,k+1 gives a quantitative measure of
the “portion of smoothess” in q+

n and, therefore, it ought to be high and increase
rather fastly when n diverges. In point of fact, Theorem 3.1 in Ref. 5 states that,
under suitable regularity conditions for the initial datum in (1), given any c in
(0, 1/2), one can determine some constant γ depending only on k and on the
Linnik functional (sometimes identified with the Fisher information) of the initial
datum, such that

||Bn,k ||H k/2(R) ≤ γ. (37)

Moreover, Un,k satisfies

|||Un,k − M ||| ≤ φ (38)

and there is a positive number A depending only on c so that (13) holds true.
Now, in view of Proposition 7, Theorem 3.1 in Ref. 5 can be simplified and

improved in the following terms:
Let the initial datum in (1) be a probability density function with finite Linnik

functional. Then (37)–(38) hold true and, for any ε > 0, there is n̄ = n̄(ε) such
that

pn,k ≤ 2k+ε

(k − 1)!

{C + log(n − 1)}k−1

n − 1

is valid for every n > n̄, C being the Euler–Mascheroni constant.
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